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Climate change is altering the distribution and abundance of fish species in ways not anticipated by current management policy. We created
spatially explicit, dynamic models of marine habitats that can inform stock assessments for 25 commercial species on the US Northeast Shelf.
The habitat models integrated substrate and seabed features along with the dynamic properties of the ocean. Changes in climate-mediated
habitat can affect the survey results by altering the availability component of catchability. Changes in availability were examined (1980–2014) by
combining species distribution models with hindcast ocean models. Three patterns in availability were evident: (1) the availability for most species
varied over time with no trend; (2) for a number of estuary-dependent species, availability varied with no trend and then dropped dramatically
in 2009 when the federal trawl survey changed vessels; and (3) for a set of mid-depth, non-estuary dependent species, availability showed a
continuous decline over time. There were few changes in dynamic habitat as the bottom water temperature did not exhibit a strong trend over
the time-period studied, resulting in little climate-attributed changes in catchability. Changes in survey design can also have dramatic impacts on
catchability, highlighting the method’s ability to detect both climate driven and survey driven changes in catchability.
Keywords: catchability, climate change, habitat, species distribution models, stock assessments.

Introduction

Marine ectotherms respond rapidly to changes in water tem-
perature as temperature is one of the most important fac-
tors regulating metabolism and all subsequent vital rates
(Magnuson et al., 1979; Brown et al., 2004). Water temper-
ature, therefore, is a major factor in determining the broad-
scale area marine organisms can occupy and is a fundamental
component defining their habitat. Previous work has shown
that distribution shifts in commercially and recreationally im-
portant species are directly related to changes in thermal habi-
tat (Nye et al., 2009; Pinsky et al., 2013; Bell et al., 2015). As
water temperatures continue to increase with climate change
(Saba et al., 2016), species will continue to track thermal habi-
tat poleward or into deeper water (Poloczanska et al., 2013;
Morley et al., 2018). Thermal habitat is a powerful ecological
factor but is only one dimension of a species’ niche (Fry, 1971;
McHenry et al., 2019). For demersal fish, other factors such
as depth, substrate or bathymetric features (e.g. peaks, val-
leys; Methratta and Link, 2006; Borland et al., 2021) intersect
with temperature to determine whether a species can occupy
a given area in both time and space. Accounting for both the
static and dynamic aspects of habitat provide a better picture
of a species’ niche requirements (Brodie et al., 2018) and how
the habitat changes on daily, seasonal, and decadal time scales.
Accounting for dynamic habitat also represents a means to in-
corporate environmental drivers into the assessment and man-
agement process. Oceanographic conditions can vary on mul-
tiple temporal and spatial scales. Incorporating these environ-
mental drivers into the assessment and management process
can account for their seasonal and annual impacts on marine
species and by extension, their longer-term impacts due to cli-
mate change.

Numerous studies have examined how shifts in dynamic
habitat could impact the distribution of marine species with
climate change (Pinsky et al., 2013; Lam et al., 2016; Morley
et al., 2018; McHenry et al., 2019); however, these types of
studies have rarely been explicitly developed to inform stock
assessments. Changes in climate-mediated habitat can affect
the index of abundance from fisheries independent trawl sur-
veys by altering the catchability (q), the proportion of total
biomass of a species caught in a trawl survey (Quinn and De-
riso, 1999). Fisheries independent trawl survey data are the
backbone of many stock assessments for species on the north-
eastern US Continental Shelf (Northeast Shelf) and around the
world (Maureaud et al., 2021). Therefore, any unaccounted
for changes in catchability could have important impacts on
model output.

Catchability (q) is one of the most important components
of stock assessments (Arreguín-Sánchez, 1996) and scales to-
tal abundance (N) or biomass (B) to a relative index such as
catch-per-unit-effort (CPUE; Quinn and Deriso, 1999).

CPUE = Nq.

Catchability is generally assumed to be static, but is known to
vary over time for numerous reasons ranging from changes in
gear and regulations to the impacts of the environment on the
distribution and behaviour of marine species (Wilberg et al.,
2009; McGilliard et al., 2019; Spies et al., 2020). Incorporat-
ing time-varying catchability in assessment models has been
done in multiple ways including estimating different q’s for
discrete time blocks, making catchability a function of an en-
vironmental variable like bottom temperature, or by estimat-
ing catchability within a state-space model (Wilberg et al.,
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2009). Here, we expand on previous studies (Kohut et al.,
2015; Manderson et al., 2015) and directly estimate the avail-
ability component of species catchability to a fisheries inde-
pendent trawl survey outside the assessment model.

Catchability is a function of availability—the proportion
of total biomass within the space-time footprint of the trawl
survey, and detectability—the proportion of biomass within
the path of a survey that is caught in the survey gear (Godø
et al., 1999). The sample design for most surveys is stratified
randomly over space, although they actually sample over time
and space. Trawl surveys on the US Northeast Shelf sample
in the spring and fall when water temperatures are chang-
ing rapidly, and species are migrating on or offshore. A sin-
gle seasonal survey for the Northeast Fisheries Science Center
(NEFSC) trawl survey can span two months, during which
time there can be dramatic changes in the oceanographic con-
ditions and the location of migrating organisms. Availabil-
ity relates to the overlap between the trawl survey footprint
and the area occupied by a given species. Should that overlap
change over time, it would alter the catchability of the trawl
survey and affect the survey index of abundance, even if abun-
dance is not changing (Kotwicki et al., 2009).

Climate-induced changes in habitat could alter the overlap
between the survey and the area occupied by a species, impact-
ing the timing of onshore and offshore migrations by affect-
ing when water temperature changes (Henderson et al., 2017;
Langan et al., 2021). It could restrict a species depth range, al-
tering their distribution within a given area (Nye et al., 2009;
Pinsky et al., 2013) and it could shift a species distribution out
of a given area (Perry, 2005). Additionally, changes in the tim-
ing or design of the fisheries independent survey could also
impact the spatial and temporal overlap between the survey
footprint and the areas occupied by a species.

To determine if there have been changes in dynamic fish
habitat, we developed species distribution models for a range
of commercially important species. Species distribution mod-
els combine environmental data with species location infor-
mation to develop the realized habitat of a species and de-
termine the probability of occurrence over an area (Elith
and Leathwick, 2009). They provide a means to identify the
suitable habitat for a species and examine how that habitat
changes spatially over different temporal scales from days,
to seasons to decades. Areas of suitable habitat are used as
a proxy for the areas occupied by a species and compared
with the survey footprint to examine overlap. For marine
species, water temperature is a major structuring component
of their niche (Petitgas et al., 2012; Sunday et al., 2012), and
the benthos is also an important niche dimension for demer-
sal species (Borland et al., 2021). We combined a thermal re-
sponse model with a benthic habitat model to produce season-
specific species distribution models.

Thermal response models have been developed for a range
of organisms and provide a mechanistic link between the phys-
iology of a species and their fundamental niche (Manderson
et al., 2015). Following Kohut et al (2015), the thermal habi-
tat model was based on the Johnson and Lewin equation
(Johnson and Lewin, 1946) which is a unimodal extension
of the Bolzmann–Arrhenius function (Dell et al., 2011). The
Bolzmann–Arrhenius function is a mechanistic model explic-
itly relating the effect of temperature on a biological activity.
Additionally, we included seven benthic characteristics to de-
fine the realized habitat. Components of the seafloor are fre-
quently included in species distribution models, but are often

included as the measure of a variable at a single point where
the tow occurred as opposed to including information about
the larger area (Borland et al., 2021). Fish exist within a larger
seascape and are found in areas that may not be well described
by a single point. A species may prefer valleys or troughs in
the seafloor that are of a certain size and can be found in those
types of bathymetric features as opposed to being present at
every pixel on a map with a particular slope. We attempted to
utilize this seascape approach and identified larger features of
the seafloor for identifying the realized niche for each species.

The goal of this work was to identify changes in the avail-
ability component of catchability (q) for 25 commercially im-
portant species on the US Northeast Shelf commonly sampled
with fishery independent surveys (Supplementary Table S1).
In an attempt to provide a broader ecological perspective, the
species distribution models combined a mechanistic thermal
response curve with ecologically driven benthic features de-
veloped to better consider the relationship between fish and
the sea floor.

Methods

Overview

The thermal-benthic habitat suitability index (HSI) was de-
veloped by combining an optimal species distribution model
with daily hindcasted bottom temperature from an ocean
model. The species distribution model was the combination
of a mechanistic thermal habitat model and a benthic model
developed with a generalized additive model based on data
from ten inshore and offshore fisheries independent trawl sur-
veys. Improving upon methods used in the 2014 Butterfish
stock assessment (Adams et al., 2015; Kohut et al., 2015), we
expanded the dimensions of habitat included in the species
distribution models by integrating substrate and bathymetric
features along with the dynamic properties of the water col-
umn that change on daily to decadal time scales. The HSI can
be integrated into stock assessments by modifying the catcha-
bility parameter (q) of the fisheries independent trawl surveys.
Catchability is a function of availability and detectability and
the HSI can be used to produce an estimate of availability. The
availability index is the ratio of the amount of suitable habi-
tat sampled by the trawl survey to the total amount of suitable
habitat calculated on a daily time step.

Fisheries independent bottom trawl surveys

Fisheries independent bottom trawl surveys provided the
species location data and water temperature data for the
species distribution models. Ten surveys were compiled cov-
ering the entire Northeast US Shelf (Table 1). The NOAA
NEFSC survey covered the entire offshore area of the shelf.
The North East Area Monitoring Program (NEAMAP) sam-
pled the nearshore waters from Virginia to Cape Cod, and
state surveys covered the inshore waters from Cape Hatteras
to Maine (Figure 1).

The NOAA NEFSC seasonal bottom trawl survey has been
conducted since 1963. The survey methodology has been
mostly consistent (Azarovitz, 1981; NMFS, 1988; Azarovitz
et al., 1997; Stauffer, 2004) up through 2008, but different
vessels and survey gear have resulted in the need for correc-
tion factors.

In 2009, the R/V Albatross was replaced by the Henry
Bigelow (Brown et al., 2007). All NEFSC trawl survey capture
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Climate-induced habitat changes in fish 2249

Table 1. The ten bottom trawl surveys included in this study.

State Department Survey
Years

available
Swept area

(km2)

Federal NOAA Northeast Fisheries
Science Center

Seasonal Bottom Trawl Surveys 1963–2018 0.037

Massachusetts Department of Marine Fisheries Inshore Bottom Trawl Survey 1978–2018 0.014
Connecticut Department of Energy and

Environmental Protection
Long Island Sound Trawl Survey 1984–2017 0.030

New Jersey Marine Fisheries Administration Delaware Bay Juvenile Finfish
Trawl Survey

1991–2018 0.007

Ocean Trawl Survey 1988–2018 0.027
Maine/New
Hampshire

Department of Marine Resources Inshore Trawl Survey 2000–2018 0.014

Delaware Division Fish and Wildlife Trawl Survey Program 1990–2018 0.013
Maryland Department of Natural Resources Coastal Bays Fisheries

Investigation Trawl Survey
1989–2018 0.002

Virginia Institute of
Marine Science

Northeast Area Monitoring and
Assessment Program

Southern New
England/Mid-Atlantic Nearshore
Trawl Survey

2007–2018 0.024

Rhode Island Division of Fish and Wildlife Coastal Trawl Survey 1980–2018 0.009

Availability predictions only go through 2014 due to the availability of ocean model data.

Figure 1. Location of surveys on the Northeast Shelf.
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data were converted into R/V Albatross units to be consistent
with the vessel used for most surveys (Reid et al., 1999) as
is done for most NEFSC stock assessments (NEFSC, 2019).
During the Albatross era, most trawls used a #36 Yankee
net, except for 1973–1981 when a #41 Yankee was used.
Trawl doors were BMV until replaced by Polyvalent doors
in spring 1985 (Azarovitz et al., 1997). Not all changes re-
quired a correction. Species-specific conversions were used for
the Henry Bigelow surveys (Miller et al., 2010). Final conver-
sion factors were calculated by multiplying conversion fac-
tors for door, vessel, and the inverse of gear (Miller et al.,
2010).

The NEAMAP surveys the inshore waters from Cape Hat-
teras, NC to Cape Cod, MA, USA. The NEAMAP bottom
trawl survey began in 2007 and overlaps both the federal sur-
vey and many state surveys (Bonzek et al., 2017). Eight bot-
tom trawl surveys from seven states covered the coastal and
inshore waters along the entire Northeast Shelf (Figure 1). To
standardize these surveys, all capture data were corrected by
swept area. For surveys where this was not calculated for each
individual tow, such as most state surveys, swept area was cal-
culated as the product of intended tow duration, tow speed,
and net size. For the NEFSC bottom trawl survey, tow dura-
tion for all samples was 30 min until the vessel switched to
the Henry Bigelow in 2009, when it was reduced to 20 min
(Politis et al., 2014). Tows were conducted at 3.8 m s-1 (Stauf-
fer, 2004; Jech and Sullivan, 2014) prior to the Henry Bigelow,
and then switched to 3.0 m s-1 for the Henry Bigelow (Politis et
al., 2014). Various nets were used during the pre-Bigelow era,
the sizes of which are documented in Azarovitz (1981). Swept
area correction was applied as a ratio of the survey swept area
to the swept area of the Albatross, keeping the Albatross unit
format applied earlier.

Following the swept area correction, a nighttime correc-
tion was applied to all surveys conducted during non-daylight
hours to account for day and night differences in catch of
species. NOAA conducts day and night surveys while most
state surveys do not. A few individual tows from state sur-
veys occurred during non-daylight hours and were also cor-
rected. Following NEFSC procedures, corrections were cal-
culated based on the solar zenith angle which accounted for
the time, date, and location of the tow (Jacobson et al., 2011,
2015).

Species distribution model

Thermal habitat
The thermal niche model defines the potential thermal habitat
available for each species on the Northeast Shelf. The num-
ber of fish caught at a given temperature in the trawl surveys
is assumed to be a proxy for the suitable thermal habitat for
each species (Brown et al., 2004). The thermal niche model
produces a temperature response, range, and optima that can
be mapped onto historical temperature fields of the North-
east Shelf to define the dynamic available thermal habitat on a
given day, season, and year. The model is based on the Johnson
and Lewin (1946) equation which is a unimodal extension of
the Bolzmann–Arrhenius function. The Bolzmann–Arrhenius
function is a mechanistic model explicitly relating the effect of
temperature on a biological activity.

The Johnson–Lewin equation is

h (T ) = ce
− ER

kbT

/
1 + e

− 1
kbT

(
ED−

(
ED

Topt
+kbln

(
ER

ED−ER

))
T

)
,

where h(T) is the predicted catch at a given temperature (K),
Topt is the optimal temperature for the species, c is a scaling
constant, kb is Boltzmann’s constant (8.62E-5 eV K−1), and
ER and ED are the activation energy for increasing and de-
creasing the response with temperature, respectively. ER and
ED allowed for an asymmetric response of how quickly h de-
clined at temperature values increasingly far away from Topt.
Template Model Builder (Kristensen et al., 2016) was used to
determine Topt, c, ER, and ED. The resulting equation predicts
abundance for each species and season for the range of bottom
temperatures.

Benthic habitat

Benthic data
To examine the relationship to benthic habitat, we divided the
entire Northeast Shelf into habitat patches based on substrate,
including hard bottom, depth, and bathymetric features. Mov-
ing beyond simple calculations of slope at the specific loca-
tion of the survey tow, the habitat patches were first formed
by dividing the entire shelf into one of three bathymetric fea-
tures: valleys, peaks, and flats based on the Benthic Position
Index (BPI). These three features were then subdivided based
on depth zones and then further partitioned based on sub-
strate. The resulting habitat patches provide an approach for
examining the abundance of fish in each tow in relation to the
larger patch as opposed to simply the exact depth or slope at
the location of the tow. The habitat patch size and shape (com-
pactness) were also considered within the model. Since patch
area and perimeter are correlated, only one of the metrics was
used in the benthic models based on model diagnostics. Depth
ranges were included as a categorical variable instead of the
exact depth of the tow to account for the variability in the
bathymetry for a tow and to ensure that species moving deeper
over time could still remain within a depth zone. All points in
the trawl survey were matched to the nearest Euclidian neigh-
bour in the benthic data to label the bathymetric feature for
each observation. The model was fit with five benthic variables
in addition to polygon shape information.

The Bathymetry layer was created by estimating the average
depth within each 100 m2. It was created by interpolating the
most recent bottom sounding for the region to ensure a contin-
uous surface. The majority of soundings originate from multi-
beam bathymetry and single beam maps acquired by NOAA,
the National Ocean Service (NOS), and other organizations
(see sources at NOAA NCEI, 2021). In locations where multi-
beam bathymetry was not available, gaps were filled by using
the digital bathymetry database from the US Naval Oceano-
graphic Office (NAVO DBDBV, 2021). All available soundings
were merged into a single layer using ArcPro (ESRI, 2019) and
interpolated to a raster surface using the Empirical Bayesian
Kriging Tool from the Geostatistical Toolbox. Bathymetry val-
ues were then reclassified into five categories based on their
percentiles.

The bathymetric features (peak, valley, and flat) were cre-
ated from the BPI. BPI is a measure that compares the depth
at one location with the depths of the surrounding cells. This
index is based on the Topographic Position Index developed
by Weiss (2001). It is often used to locate features across the
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seafloor. We used the NOAA’s Benthic Terrain Modeler to cal-
culate BPI values using our bathymetry layer (Walbridge et al.,
2018). BPI is a scale-dependent measure, so its values depend
on the number of cells used to calculate it. We calculated BPI at
two different scales: broad scale (inner radius: 9 cells, outer ra-
dius: 90 cells) and fine scale (inner radius: 3 cells, outer radius:
25 cells). Both layers were then standardized and reclassified
into different features (valleys, flats, and peaks) depending on
their values.

The sediment layer estimated the percentage of each type
of main soft sediment (sand, gravel, and mud) within each
100 m cell. This was created by interpolating the most re-
cent sediment estimates across the region. Multiple sources
of sediment information were combined to produce the layer:
Woods Hole Sediment texture database (McMullen et al.,
2014), USGS usSEABED database (Reid et al., 2005), the Uni-
versity of Massachusetts Dartmouth School of Marine Sci-
ence and Technology video survey data (Harris and Stokes-
bury, 2010), and data from selected NOS bathymetric surveys
(NOAA NCEI, 2021). All these samples were cleaned to re-
move erroneous values (e.g. over land), and compared to elim-
inate duplicates. We also removed samples where percentages
could not be easily derived. All the points were merged using
ArcGIS Pro (ESRI, 2019), and interpolated using the EBK re-
gression prediction tool from ArcGIS’ Geostatistical Analyst,
with bathymetry and BPI at two different scales as covariates.
We interpolated three different surfaces: percentage of sand,
percentage of mud, and percentage of gravel. We reclassified
each surface depending on the percentages. For example, for
sand, the classes were (1) absence of sand (<25%), sand com-
bined with others (25–75%), and majority sand (>75%). We
finally combined all three reclassified rasters into one single
layer with the following classes:

o dominant sand (>75% sand).
o dominant mud (>75% mud).
o dominant gravel (>50% gravel).
o sand and gravel mixed.
o sand and mud mixed.
o mud and gravel mixed.
o other (three type mixes in different quantities).

The probability of hard bottom was also included as a vari-
able within the benthic habitat model.

To include a measure of the shape and area of the seafloor
features, we made a layer consisting of the unique permuta-
tions of bathymetric features, depth, and sediment. This was
converted to polygons using ArcPro (ESRI, 2019). We sim-
plified polygons to make sure that the shape did not include
any artifacts from the original raster data. We also removed
any features that were smaller than 21000 m2 (less than 3 by
3 cells in size). For each of the resulting polygons, we calcu-
lated their total area, perimeter, and a compactness score. For
compactness, we used the Polsby–Popper index, a measure of
compactness of a shape that is often used in gerrymandering
studies (Polsby and Popper, 1991), and it is calculated as

4πarea
perimeter2

.

Benthic model

The different benthic habitat components were then inte-
grated into a logistic generalized additive model (GAM;
Wood, 2006). GAMs provide the flexibility to both deter-

mine if a particular parameter is an important component of
the benthic habitat relationship and determine its functional
form.

The GAM formula for all variables was

Presence ∼ BPIbroadclasses + BPIf ineclasses

+ sedclasses + depthclasses

+ HB + s
(
ln

(
patch

)) + s (compact ) ,

where presence is a binary presence/absence label for each
species, each benthic class is as described above, HB is a binary
hard bottom label, patch is either the area or perimeter of the
defined patch where the pixel is located, and compact is the
Polsby–Popper index of the patch. Smoother splines (s) were
set to have a maximum of four degrees of freedom to avoid
overfitting and inferring a relationship that may not be bio-
logically relevant. All variable combinations were considered,
with the lowest Akaike’s Information Criterion (AIC; Akaike,
1974) score determining the best model. A five-fold cross val-
idation was performed for each species and season. The final
model for each species was calculated using all available data
for that season, utilizing the variable selection from the par-
titioned model with the lowest AIC. Benthic probability was
predicted across the entire model domain, resulting in sepa-
rate habitat projections for each species and season. Since ben-
thic probability for low-prevalence species was not necessarily
on the same scale as thermal suitability and normalization is
sensitive to outliers, benthic projections were capped at and
normalized to the value where the Z score of the geographic
model domain equaled 2.

Ocean model

The thermal-benthic HSI was calculated from 1980 to 2014
at a daily time step for the spring and fall seasons (mean 40
d per season) across the entire US Northeast Shelf for each
species. The HSI was produced by combining the species dis-
tribution model for each species with daily hindcast bottom
temperature data derived from the ROMS-COBALT-NWA
ocean model (Kang and Curchitser, 2013, 2015), developed
by Rutgers University and NOAA Geophysical Fluid Dynam-
ics Laboratory (shortened to “ROMS” hereafter). The ocean
model uses the Regional Ocean Modeling System framework
(Shchepetkin and McWilliams, 2005) and consists of curvi-
linear 7 km cells with 40 terrain-following depth layers. The
spatial domain covers most of the Northwest Atlantic Ocean
from the Caribbean Sea through the Gulf of St. Lawrence.
SODA v2.1.6 (Carton and Giese, 2008) provides the bound-
ary conditions, and surface components are derived from the
CORE.v2 data sets (Large and Yeager, 2009). Ocean model
output was available from 1980 to 2014. More information
regarding the physical components can be found in Kang and
Curchitser (2013, 2015).

To ensure accuracy of the ocean model, we compared bot-
tom water temperatures simulated by the ROMS model with
in situ temperature observations from the state and federal
trawl surveys. We separated 55976 trawl survey locations by
geography, season, and year to determine where biases may
be impacting the bottom temperature output of the ROMS
model. Because bias was only detected spatially and not tem-
porally, a correction factor was calculated by subtracting the
average seasonal modelled temperature from the average ob-
served temperature for the seasonal trawl time series for each
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point in the ROMS model and applied to the daily bottom
water temperature for the availability calculation. In areas on
the shelf where there were no trawl survey data to compare
the model to, bias was linearly interpolated from surrounding
points. This process debiased the model while still allowing for
the nuances and variation provided by the higher resolution
model to be identified.

Habitat suitability index and availability

The thermal habitat model and the benthic habitat model
were equally weighted and combined to produce an overall
thermal-benthic HSI. The square root of the normalized ther-
mal abundance and the Z-normalized probabilistic benthic
habitat model were used for each component of the HSI equa-
tion. This combination optimized the predictive model fit of
the testing data for most species.

HSI j,T = sqrt
(

hT

hT opt

)
×

(
bj

Zmax
(
b
)
)

,

where h is the thermal abundance projected by the Johnson–
Lewin equation at bottom water temperature T located at
point j. Topt is the optimum temperature for the species, b is
the benthic probability, and Zmax is the Z = 2-normalized
benthic probability of the model domain. The resulting HSI
is a value between 0 and 1 indicating the overall habitat suit-
ability for a species at a single point in space and time.

Seasonal availability (ρ) is a measure of the overlap between
the trawl survey and the area the species occupied (Supple-
mentary Figure S1). The HSI was used as a proxy for the area
the species occupied. Availability was calculated as the cumu-
lative percentage of the available species habitat (determined
by HSI values) the NOAA bottom trawl survey covered in a
particular season using the formula

ρH =
o∑

k = 1

HSIk, j,i × area of survey stratak
p∑n

j = 1 HSIj,i × Area j
,

where HSIk,j,i is the HSI of sample k at location, j on day i. The
p is the number of times the strata containing sample k was
surveyed, n is all pixels in the model domain, and the average
area of each pixel j is 0.0169 km2.

The annual availability index and the annual thermal-
benthic HSI for each species were evaluated for linear trends
over time in each season. Trends were examined with stan-
dard linear regression (Index = m × year + β0+ e). All linear
models were tested with the Durbin–Watson statistic (Durbin
and Watson, 1950) to evaluate autocorrelation. Linear mod-
els with autocorrelation were rerun within a generalized least
squares linear model that included autocorrelation. An α of
0.05 was used to determine significance.

Model evaluation metrics

In addition to the validation for each separate component, the
combined thermal-benthic HSI models for each species and
season were validated with a five-fold cross validation. For
each partition, the model was trained on 80% of the data and
tested on the other 20% with each cross validation pulling
randomly to select the training and test data sets. The parti-
tions were the same as used in the initial GAM CV. HSI was
treated as a probability of occurrence so it could be validated
against observations in the test set. Model predictions were

evaluated using the True Skill Statistic (TSS) where

TSS = sensitivity + specificity − 1.

TSS balances the true positive rate (sensitivity) and the true
negative rate (specificity) while punishing the model for heav-
ily prioritizing one metric over the other, as may be the case
with unbalanced data with fewer observed positives (Allouche
et al., 2006). It ranges from -1 to 1 with 0 indicating random
classification. Models with a TSS > 0.40 are considered ade-
quate (e.g. Zhang et al., 2015). Area under the curve (AUC)
is a threshold-independent metric measuring the tradeoff be-
tween sensitivity and specificity and was also considered in
evaluation. Here, 0.70 was a minimum acceptable score (e.g.
Zhang et al., 2015).

Dynamic factor analysis

Common patterns across the time-series of species availabil-
ity were evaluated with DFA. DFA is a state-space technique
for identifying common patterns or trends across numerous,
short, non-stationary time-series making it well suited for fish-
eries data (Zuur et al 2013). The method uses both a process
equation and an observation equation. Selection of the most
appropriate number of common trends is done through AIC
after examining a user supplied number of common trends.
The process equation is a random walk with multivariate nor-
mal error (MVN). The Q matrix is set to the identity matrix.
The number of random walks contained within the process
equation denotes the number of common trends.

xt = xt−1 + wt−1,

where wt-1 ∼ MVN(0,Q). The observation equation linearly
combines the random walks and the Z matrix resulting in the
availability indices (ys).

yt = ZXt + Vt,

where vt ∼ MVN(0,R). The factor loading variable Z is a ma-
trix that accounts for the degree to which an individual time
series of availability is represented by the common trend. The
measurement error vt is MVN.

Software

All GAMs were created in R (version 4.0.2; R Core Team,
2021) using the “mgcv” package (Wood, 2006). Thermal
abundance was calculated using Template Model Builder
(Kristensen et al., 2016). Fit statistics and threshold determi-
nation used the “PresenceAbsence” R package (Freeman and
Moisen, 2008). The DFA was run in the R package MARSS
(Holmes et al. 2012). Figures were created in R and MAT-
LAB (version 2020b; Mathworks Inc, 2020) using the open-
source m_map software package (https://www.eoas.ubc.ca/∼
rich/map.html) for all MATLAB mapping.

Results

Species distribution models

The species distribution model defined the suitable habitat for
each species for the dimensions of the niche included in the
model. Species generally had different optimal temperature
ranges between the spring and fall seasons (Figure 2), but less
seasonal variability in depth range, substrate, and bathymet-
ric features. Depth and bathymetric features were relatively
consistent between seasons, but substrate could be variable
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Figure 2. The temperature and depth range for each species from their essential fish habitat (EFH) reports and the output of the species distribution
models. Information is displayed for species and seasons with an acceptable species distribution model. EFH information was not available for every
species.

in some species. The final models for each season and species
utilized bathymetric classes, sediment classes, and patch size.
Most models used all of the other variables, with some ex-
ceptions (Supplementary Tables S2 and S3). Classifying peaks
and valleys with BPI was useful in most models, and generally
had more impact on broader scales rather than finer scales.
Offshore species such as Acadian redfish and pollock exhib-
ited very little difference in suitable habitat between the spring
and fall, while species with seasonal estuary use tended to have
more variability in their habitat components between seasons.

Specific species distribution models were generated for each
species in each season. As an example, the species distribu-
tion model for summer flounder in the fall is presented and
compared to the National Marine Fisheries Service essential
fish habitat (EFH) documentation that is a legally required de-
scription of habitat for all federally managed species (Packer,
1999). Summer flounder are found over a wide depth range,
however, this study found the flatfish most prominent in shal-
low water with abundance decreasing with depth (Figure 3).
EFH and the species distribution model both indicated sim-
ilar temperature ranges and similar substrate characteristics.
Summer flounder are found predominantly in temperatures

ranging from 12–15 C, on sandy substrates or sand mixed
with mud or gravel or both. As expected, the species was not
found on hard bottom (No HB). One of the focuses of this
study was to also include the type of features where species
are likely to be found. Summer flounder are most commonly
found on areas that are peaked or mounded along with flat
areas. They are generally not found in valleys.

The suitable habitat defined by the species distribution
models was generally similar to the habitat as defined by the
NOAA EFH documents (Figure 2 and see Supplementary Ma-
terial). There were some major discrepancies such as large dif-
ferences in the optimal temperature range for windowpane
and winter flounder compared to EFH ranges, but overall the
ranges overlapped for most variables. Differences were likely
related to time of year and location of samples. EFH does not
include bathymetric features as a habitat dimension and so
there was no comparison available. The bathymetric features
variables were highly significant in the GAMs for every species
and produced a single optimal feature (peak, valley, or flat)
for almost every species in both seasons. In the spring, ocean
pout, dogfish, and yellowtail flounder were the only species
that were most common on flat areas. No species in the spring
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Figure 3. Plots of habitat characteristics of Summer Flounder in the spring from the species distribution model (SDM) (grey, black) overlaid with
information from the Essential Fish Habitat documents (EFH) (blue hash marks). To visually compare descriptive EFH text to the species distribution
models, SMD parameter estimates were scaled to low (1), medium (2), and high (3) occupancy. SDM parameter estimates can be found in the
supplementary material. Depth is plotted from 0 to 175 m with 175 m representing all depths 175 m and greater. Sediments include Sand (S), Mud (M),
Gravel (G), and combinations of these (e.g. S.G = Sand and Gravel mix). Sediment also displays whether the species was found on Hard Bottom (HB) or
not on Hard Bottom (No_HB).

were common on both peaks and valleys. In the fall, winter
flounder, dogfish, little skate, tautog, yellowtail flounder, and
ocean pout were the only species that were most common on
flat areas. For the few species in either season that were com-
mon on two features, they were found on peak and flat areas
or valley and flat areas. White hake in the fall was the only in-
stance across all species and seasons to be commonly caught
on both peaks and valleys.

The size of the habitat patch and the compactness of the
habitat patch (long and thin versus round) were significant
and included in the distribution models for almost every
species in both seasons. The distribution of patch size for most
species was domed shape with an optimal range that var-
ied by species. The distribution was not particularly peaked
indicating that most species could be found on a range of
patch sizes, but were more commonly found within a particu-
lar range. A few species such as striped bass, silver hake, and
summer flounder were more commonly found on larger habi-
tat patches with only blueback herring being more common
on smaller patch sizes. The compactness variable, the measure
of the shape of a habitat patch exhibited a similar pattern
across a number of species in both seasons. The most com-
mon pattern was a slight peak at both end members (long and
thin, tightly compacted) often with a small amount of wavi-

ness. Occurring much less frequently, a few species were more
commonly found on habitat patches that were more compact
(more cohesive as opposed to long and thin). Similar to the
patch size, the majority of species could be found on a range
of patch shapes, with only a slight increase within a particular
shape suggesting generalist species.

Regional ocean modeling system

The predicted bottom water temperature from the ROMS
ocean model matched the seasonally averaged observed tem-
peratures fairly well (Supplementary Figure S2). The ROMS
model exhibited the expected geographic patterns of bot-
tom water temperature and seasonal variability. However,
the model generally overestimated water temperature in the
southern Mid-Atlantic Bight, southern New England, and the
western Gulf of Maine, while underestimating water tempera-
ture near the shoreline, shelf break, and eastern Gulf of Maine
and Georges Bank (Supplementary Figure S2). Overall, the
ROMS model and the trawl survey bottom water tempera-
tures had a Pearson correlation coefficient of 0.905. The spa-
tial pattern was consistent through time so no temporal cor-
rection was needed, but a spatial correction by season was
required. After the spatial-seasonal correction factor was ap-
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plied and the geographic biases in the uncorrected model were
accounted for, the correlation coefficient between the ROMS
model and the observations rose to 0.949.

Species distribution model validation

The models produced useful (TSS > 0.4) HSIs for 18 of 25
species in the spring and 24 of 25 species in the fall. TSS
ranged from 0.28 for Alewife in the spring to 0.79 for Amer-
ican plaice in the fall (Supplementary Tables S4 and S5). All
models for all species except Lobster in the spring passed the
AUC limit. Generally, models in the fall scored better than the
spring models. Most of the models had a higher sensitivity
than specificity, prioritizing true positives instead of true neg-
atives. The TSS scores for each of the five cross validations
were relatively close as indicated by the small standard de-
viation values for each species and season, indicating that the
models produced a consistent level of fit regardless of the data
selected to train the models. The standard deviation of perfor-
mance metrics among individual fits in the cross validation
was also unrelated to the overall quality of the model for ei-
ther TSS or AUC.

Habitat suitability index

The suitable habitat for each species as represented by the
HSI varied both seasonally and annually in both the spring
and fall (Figure 4). Deeper water species, such as Acadian red-
fish tended to exhibit smaller seasonal changes in HSI, while
species that utilize estuaries and make strong onshore/offshore
migrations typically had the largest changes in HSI. The HSI
for species that prefer colder waters such as yellowtail floun-
der declined over the course of the spring season and increased
over the fall season (Figure 5), while warmer water species ex-
hibited the opposite pattern.

The cumulative HSI (sum of the bi-monthly HSI values of
the model domain during the months the trawl survey typi-
cally operates) varied over the time series in both spring and
fall with most species having no long-term trends. Over the
time period of the study, suitable habitat varied for most
species, but did not increase or decrease. The HSI for three
species in the spring significantly increased and the HSI for
five species in the fall had significant trends (Supplementary
Table S6 and Figure 4). Two species had positive trends and
three species had negative trends. Changes in the phenology
of the dynamic habitat were examined by looking at changes
in HSI at the beginning and end of the trawl seasons (Supple-
mentary Tables S7 and S8). The HSI for the same three species
in the spring indicated a significant increasing trend in suitable
habitat at the beginning of the season (mean of the first two
weeks of March), and only white hake exhibited an increasing
trend in suitable habitat at the end of the spring season (mean
of the last two weeks in May). In the fall, the HSI at the be-
ginning of the season had significant trends for seven species
and the HSI for six species at the end of the fall season were
significantly trending. There was more change in the fall than
in the spring.

Availability

Based on the HSI, availability indices for the federal trawl sur-
vey were developed for 18 of 25 species in the spring and 24 of
25 species in the fall. Across the different species, availability
was generally variable without a trend (Figure 6). This indi-
cates that the federal trawl survey is, on average, sampling the

same amount of the potential habitat each year and season. In
both seasons, the availability indices for some of the species
showed a drop toward the end of the time series (∼2009). The
fall exhibited larger variability over time than the spring. Six
species in the spring and seven species in the fall exhibited sig-
nificant negative trends in their availability indices, and none
of the species had significant positive trends (Table 2 and S9).
Haddock, yellowtail flounder, and dogfish had significant neg-
ative trends in both seasons. The other species only exhibited
the trend in one season.

Dynamic factor analysis

DFA was run on the availability indices to examine overall
patterns or trends in the time series (Zuur et al., 2003). The
analysis fit two common trends for the spring and four com-
mon trends in the fall (Supplementary Figures S3–S5). In the
spring, the first trend declined through the initial part of the
time series before becoming variable without a trend. The sec-
ond common trend had three peaks (early 1980s, late 1990s,
and mid 2000s) before declining sharply at the end of the time
series. The species loadings, the amount of variability in the
individual species availability indices that was accounted for
by the trend, varied across the species. The availability indices
for species with large positive loadings tracked the trend well,
while those with large negative trends exhibited the opposite
pattern. Species with small magnitude loadings did not track
the trend well. Witch flounder, haddock, and American plaice
loaded most strongly on trend one. Tautog, little skate, striped
bass, and menhaden were the most closely aligned with the
second common trend.

In the fall, the first common DFA trend was variable with
no linear trend. Atlantic herring, pollock, and American plaice
loaded strongly on this trend indicating their availability in-
dices tracked with the trend. The magnitude of the factor load-
ings was large, suggesting a number of species exhibited com-
ponents of this trend. DFA trend two was variable with a de-
cline and/or potentially three declining periods. Loadings had
large magnitude and yellowtail flounder loaded the strongest
along with several other species that had significant declin-
ing availability indices. There were no species with large mag-
nitude negative loadings that would suggest increasing avail-
ability. DFA trend three varied about a mean until the late
2000s and then jumped up. A number of species loaded neg-
atively for this trend indicating that their availability indices
exhibited the opposite pattern. DFA trend four was again vari-
able without a linear trend. Similar to trend three, a number
of species loaded negatively for this trend. Most species only
loaded strongly on a single trend and had low magnitude load-
ings on the other trends indicating that they generally followed
one of the four trends the most closely. Windowpane floun-
der was one of the few species that loaded strongly on two
trends (three and four) resulting in an availability index that
was variable with a sudden decrease in the late 2000s.

Trend two in the spring and trend three in the fall both
exhibited substantial changes around 2009. In 2009, the fed-
eral trawl survey changed vessels and stopped sampling some
of the inshore strata. In both seasons, the number of inshore
tows dropped from a mean of 90 before the switch to a mean
of ∼70 after the switch (Figure 7). Species that loaded strongly
for these two trends were commonly found in inshore waters
and exhibited a substantial drop in their availability index
after 2009. Species like menhaden, tautog, and striped bass
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Figure 4. Annual HSI value for each species in the spring and fall. Lower plots display HSI with significant trends.

Figure 5. Seasonal changes in the HSI for Yellowtail flounder on Georges Bank in the spring. In a given year, the HSI is generally largest in March (blue)
and decreases as the water warms through April (purple) and May (Orange).
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Figure 6. Annual availability index for each species in the spring and fall. Lower plots display availability with significant trends.

Table 2. Species with significant trends in availability.

Spring
Species Slope P-value

Haddock −0.003 0.001
Yellowtail flounder −0.002 <0.001
Witch flounder −0.002 0.003
Pollock −0.002 0.036
Dogfish −0.002 0.002
Ocean pout −0.001 0.03

Fall
Haddock −0.002 0.002
Yellowtail flounder −0.003 0.003
Winter flounder −0.002 0.019
Striped bass −0.004 0.011
Dogfish −0.001 0.001
Silver hake −0.001 0.014
Tautog −0.004 0.005

Trends were tested for autocorrelation and refit with an autocorrelation term
if it was present.

are not particularly well sampled by the federal trawl survey,
but had substantially higher catch rates in the inshore areas
in both seasons. Species like black seabass, summer flounder,
and winter flounder undergo seasonal onshore and offshore

migrations. Black seabass and summer flounder exhibited
sharp declines in their availability indices in the fall when they
were inshore, but not in the spring when they are typically
in offshore waters. Winter flounder undergoes an opposite
seasonal migration pattern and had a drop in availability after
2009 only in the spring.

NEFSC trawl survey

The timing of the trawl survey was variable without any
strong trends from the mid-1980s through 2010s (Supplemen-
tary Figure S6). Prior to 1985 the survey generally occurred
later in the year. During the time period of the study, there
were some later surveys and shortened surveys, but they were
typically intermittent. For example, the spring survey started
several weeks later than normal in 1987, 2000, and 2014.
The survey sampled the full Northeast Shelf almost every year
providing similar spatial coverage, but the survey sometimes
started in different locations and/or extended sampling south
below Cape Hatteras changing the timing of when it sampled
different sections of the shelf.
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(a) (b)

(c) (d)

Figure 7. (a) The location of tows that were dropped from the survey in 2009. (b) Proportion of inshore and offshore survey tows that caught Black
seabass in the fall. (c) Location of positive tows. Purple points are located in the dropped strata and black points are in strata that continue to be
sampled. (d) The number of tows conducted in the inshore strata (mean pre-2009 = 90, mean post-2009 = 71) along with the annual availability index.

Discussion

As climate varies and changes, it alters the suitable habitat
available to natural marine resources, thus directly impacting
the distribution and abundance of species. Changes in habitat
drive shifts in distribution and influence abundance indices
from fisheries surveys, potentially having major impacts on
the management and stock assessments of species (O’Leary
et al., 2021). On the US Northeast Shelf, warming conditions
have increased the habitat available for species such as black
seabass (Bell et al., 2015) and changed the seasonal timing of
available habitat (Henderson et al., 2017; Langan et al., 2021).
In addition to changing oceanographic conditions, the timing
and location of sampling has not always been consistent by
the fishery independent trawl surveys. Major changes in the
spatial-temporal overlap between the trawl survey and loca-
tion of the species can affect the index of abundance used in
stock assessments and cause serious problems for specifying
catch advice (O’Leary et al., 2021). Directly integrating a time-
varying, habitat-mediated catchability coefficient into the as-
sessment process, however, is one means to account for the
changes in species and survey overlap (Wilberg et al., 2009).

The 2014 butterfish stock assessment demonstrated how
integrating thermal habitat can improve survey estimates and
provide better catch advice (Adams et al., 2015). Expanding
on the 2014 method, we developed the thermal-benthic HSI.
While thermal habitat is one of the main drivers determin-
ing where organisms can exist, not every location with op-
timal temperature is suitable habitat (McHenry et al., 2019;
Borland et al., 2021). For marine taxa, particularly demersal
species, additional niche dimensions such as the benthos are
essential for defining suitable habitat (Methratta and Link,
2006; Borland et al., 2021). The habitat models provided good
estimates of the probability of occupancy for most of the
species examined in the study and when paired with a hind-

cast ocean model enabled us to track habitat over space and
time.

In general, the suitable habitat for each species as defined
by the species distribution models was very similar to the
descriptions from the EFH materials. The optimal temper-
ature ranges and depth distribution tended to match well,
and the substrate specifications were similar. Many of the
demersal species within the study are considered general-
ists and can be found on a number of substrates (Collette
and Klein-MacPhee, 2002). Species like windowpane floun-
der can be found on sand, mud, or mixed substrates and pre-
vious work found that substrate alone was not a particularly
good indicator of species abundance on the Northeast Shelf
(Methratta and Link, 2006). Some patterns did emerge, how-
ever, indicating that while species can be found on a range of
substrates, they do have a preference for certain sediments.
Little skate and summer flounder were sampled on all sub-
strate types, but were most commonly sampled on sand or
sand mixed with other sediment types. Similarly, pollock was
found on all substrate types, but was in highest abundance
on gravel or gravel mixes, while silver hake could be found
across the substrate types, but preferred mud or mixed mud
substrates. Other species, such as dogfish, followed the gener-
alist pattern with a preference, but the preference was different
for the two different seasons. Dogfish were most commonly
found on sand and mixed sand substrates in the spring, but
switched to mud or mixed mud substrates in the fall.

Within the species distribution model, substrate was likely
not well specified for species that prefer structured habitat like
tautog and striped bass, as these species are not particularly
well sampled by the trawl surveys. The trawl surveys do not
sample the full habitat for these species, and only provide a
limited view of their substrate preferences. The surveys do,
however, provide good estimates of depth and temperature
(Collette and Klein-MacPhee, 2002).
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While substrate alone may not be a particularly good in-
dicator of a species preferred habitat (Langton et al., 1995),
within the multilayered benthic habitat variables included in
the models, substrate, and all the variables were highly sig-
nificant. By combining the bathymetric features with depth
and substrate, the models produced good estimates of benthic
habitat. Species tended to have a strong preference for a single
bathymetric feature (peak, valley, and flat) or a combination
of one of the features with a flat area. Seafloor topology is
rarely included in essential fish habitat determination, but the
models indicate that like previous studies (Auster et al., 1991,
1995) the species are responding to the shape of the seafloor
itself. Including simple metrics such as peak, valley, and flat,
as was done in this study could provide a better description
and more accurate location of essential fish habitat.

The combination of the species distribution models with
hindcast ocean model data enabled the examination of the
changes in species habitat over the last 35 years. Suitable habi-
tat for most species varied over time without a trend; however,
some species exhibited changes in the amount and timing of
suitable habitat over the time period. Compared to the volumi-
nous literature on climate-induced changes for species on the
Northeast Shelf (Hare et al., 2016; Peck and Pinnegar, 2018,
and references within both), the changes in suitable habitat
are relatively minor.

There are at least four potential reasons for the small
changes in suitable habitat. (1) While studies have made much
of the rapid increase in sea surface temperature on parts of
the Northeast Shelf (Pershing et al., 2015), bottom tempera-
ture does not exhibit an increasing trend. Over the time span
of the study, 1980–2014, the observed bottom temperature
on the Northeast Shelf has generally varied with little to no
trend (NEFSC, 2012). Bottom temperature, particularly in the
northern part of the shelf, increased dramatically in the 2010s,
however, such that the bottom temperature time series going
from 1980 to 2020 does exhibit a significant increasing trend
(NEFSC, 2021a, b). (2) The spring and fall seasons are im-
portant transitional periods for many species, but may not
be the major thermal structuring time period. Other times
of year—such as the peak of summer or the dead of winter,
when temperatures are extreme are not part of the study—
could have a more important climate impact. (3) Observed
temperature data provides the true temperature from the fed-
eral trawl survey, but only for the locations and times sampled.
For example, when the trawl survey measures the bottom tem-
perature off Virginia, it cannot simultaneously measure the
temperature in the Gulf of Maine and may not record the
temperature in the Gulf of Maine until two months later. We
used a synthetic data product in order to get location-specific,
daily bottom temperature information over the entire North-
east Shelf. The observed trawl survey data cannot provide
temperature information at that resolution and can only pro-
vide a shelf wide seasonal average of the bottom temperature.
Thus, comparisons of the observed seasonal temperature with
the seasonal synthetic data product are not exactly matched.
(4) And, finally, the COBALT ocean model is a good model
that captures the seasonal dynamics and long term changes
well, but is still a model (Kang and Curchitser, 2013, 2015).
It does not perfectly capture the observed data, but still pro-
vided the best estimate of daily hindcast bottom temperature
over the longest time span. The observed and modelled data
were highly correlated with no change in the correlation over
time indicating that the model captured the dynamics of the

ocean well. The combination of these factors likely results in
the relatively small changes in suitable habitat for the suite of
species examined. It is anticipated that updated ocean mod-
els with hindcast bottom temperatures through to the current
year would show changes in HSI.

While the suitable habitat for species exhibited some
changes over time, there were also various degrees of changes
to the timing and location of the NEFSC trawl survey over the
same period. The combination of changes in suitable habitat
and changes in the trawl survey timing and location resulted
in three overarching patterns in the availability component of
catchability.

The first pattern in availability was an index that varied
over time without a trend and was the most common pattern,
particularly in the fall. This pattern combines trend one and
four from the DFA in the fall and those species not captured
well by either trend in the spring. The majority of species that
had this pattern were offshore or basin species such as white
hake and Acadian redfish that generally do not exhibit large
onshore/offshore seasonal migrations. The species are gener-
ally not estuary-dependent, are found in deeper water, and
have similar thermal habitat needs in the spring and fall. Their
suitable habitat does not change a great deal over the season,
and they are predominantly found within the Gulf of Maine.
Because the species do not make major changes to their lo-
cation, if the trawl survey samples the full spatial extent of
their suitable habitat within a season, the overlap between the
species and the survey is relatively robust to the timing of the
trawl survey.

The availability index of two estuary dependent fish,
alewife and blueback herring followed pattern one (variable
without a trend). These two species are not sampled particu-
larly well by the NEFSC trawl survey and have a highly vari-
able survey index. The overlap between the survey and the
two species was never particularly good. It is likely that any
changes in the survey or suitable habitat may have increased
the noise in that relationship, but has not resulted in any sig-
nificant changes. The lack of a trend in the availability in-
dices for species following pattern one does not indicate any-
thing about the potential changes in the quantity or location
of suitable habitat for these species, simply that the trawl sur-
vey has sampled the same proportion of suitable habitat each
year.

The second pattern in the availability indices resulted from
a known change in the NEFSC trawl survey in 2009 (Miller
et al., 2010; Politis et al., 2014). The indices are variable for
the first few decades and then drop substantially in 2009. This
pattern was captured by the DFA as trend two in the spring
and trend three in the fall. In 2009, the NEFSC trawl changed
vessels, gear, and survey design. Some of the inshore strata
were dropped and the number of tows in inshore waters went
from roughly 90 to about 70 each season. The change had al-
most no change on the availability of offshore species but was
clearly visible for nearshore and estuary dependent species
such as tautog, striped bass, and Atlantic menhaden. Unlike
alewife and blueback herring that are also estuary-dependent,
these three species are only caught in nearshore waters. In
both seasons, almost all positive tows are inshore resulting
in their availability indices changing dramatically with the
change in the number of inshore tows. For other species that
migrate on and offshore seasonally, there was a clear change
in availability when they were inshore. Summer flounder and
black seabass exhibited a drop in availability in the fall when
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they were inshore during the warmer months, while winter
flounder and little skate showed a drop in availability during
the winter months (spring survey) when they were inshore.
Summer flounder and black seabass are offshore during the
cooler months, however, some individuals are still caught in
the nearshore waters during the spring. The availability in-
dices for both species in the spring did not show the large
change it exhibited in the fall, but did show a small difference
suggesting a change in availability.

A number of species also showed a substantial drop in avail-
ability in spring 2014 that was not related to the change in in-
shore strata coverage. The NEFSC trawl survey did not begin
sampling until April of 2014, a few weeks later than its typical
start in March. Furthermore, the survey started three degrees
farther north than usual. The survey started at 38 N instead
of 35 N and therefore did not cover the Northeast Shelf all the
way down to Cape Hatteras (Figure 8). The change resulted
in certain areas not being sampled, decreasing availability for
species whose range extends further south. It also altered the
timing of when the trawl survey sampled certain strata dur-
ing the time of year that suitable habitat is changing rapidly
across the shelf. Though most of the strata were sampled, the
delayed start of the trawl survey caused a change in the spatial-
temporal overlap between the trawl survey and the species lo-
cation, resulting in a sharp drop in availability in spring 2014
for some species. All the species affected were fish that used
nearshore waters and had a large presence in the Mid-Atlantic
Bight–Southern New England area. The species not affected
tended to be found farther north and in deeper water. Simi-
lar to pattern one, the species that were not affected tended
to exhibit less seasonal movement so that as long as the trawl
survey sampled their full spatial extent, the timing was not as
critical.

Pattern three was a significant decline in availability over
the course of the time series. It was identified by DFA trend
one in the spring and trend two in the fall. The species in the
spring that fit this pattern were all offshore species such as
haddock, yellowtail flounder, and dogfish that were found in
mid to deeper waters and were not estuary-dependent. In the
fall, similar mid to deeper water species had significant nega-
tive trends along with one inshore species, tautog. When test-
ing the availability indices for trends, every species had a neg-
ative trend, but only the trends for six species in the spring
and seven species were statistically significant. The slopes of
the significant and non-significant trends were similar and rel-
atively small in magnitude suggesting there was not a tremen-
dous amount of difference between species following pattern
one and species following pattern three. What made the trends
significant for these species is likely lower variability of the
availability index. For a number of species, there is a small,
but continual decline in the overlap between the trawl survey
and suitable habitat.

While changes in long-term fisheries independent trawl sur-
veys are typically not good, the change in 2009 represents a
known test of the methods outlined in this study. The clear
change in availability for numerous inshore species, but not
offshore species demonstrates that the method is effective
and can account for changes in the availability component
of catchability. The Northeast US Shelf has a number of fish-
eries independent trawl surveys and fortunately an inshore
survey, NEAMAP, that covers much of the strata dropped by
the federal survey came online in 2007. NEAMAP has sam-
pled much of the inshore strata through to the present, and

therefore captures much of the information with a similar
methodology, though as a different survey index. In addition
to maintaining the same sampling frame in order to provide
a consistent index of abundance, most stock assessments on
the Northeast Shelf pull information from a consistent set
of sampling strata that defines the stock boundaries. When
the inshore strata were dropped from the federal survey, the
assessments for many inshore species changed the strata used
in the model and only pulled data from the offshore strata.
This removed the large change in catchability caused by the
change in availability and is not a problem as long as the abun-
dance signal for the inshore strata and the offshore strata are
the same.

Like all modelling projects, the results of this study are con-
tingent on decisions and assumptions made during the project.
The spatial scope of the study was limited to the shelf break
and areas covered by US fishery independent trawl surveys
largely because of data. Continuous benthic data were avail-
able from mean low water to the shelf break and therefore
suitable habitat could only be defined within that geographic
area. Species such as dogfish that are often found beyond the
shelf break likely have larger suitable habitat ranges than ac-
counted for in this study. In addition, the dynamic compo-
nents of suitable habitat were defined by bottom temperature
information from an ocean model. The method required daily
bottom temperature information and therefore could not use
sea surface temperature or seasonally interpolated observa-
tions (Friedland et al., 2020). The ocean model output was
only available from 1980 to 2014 and thus defined the time
period of the study. Some species have more specific habitat
requirements and may, for example, have a stronger affinity
to the bottom than others. The method assumes some habitat
specificity and therefore may not be as applicable for highly
generalist species. The HSI specifies the suitability of a habi-
tat, but fish may not occupy the full extent of their suitable
habitat, particularly if their population has declined from his-
torical biomass levels as the majority of these species have. In
addition, the suitable habitat for different sizes/ages of a fish
may shift as they go through ontogenetic changes. To keep the
study tractable, species were not broken down by size class,
but could be in future studies. Lastly, this analysis was fo-
cused on providing a broadly applicable framework for in-
tegrating dynamic habitat into the stock assessment process
by modelling 25 different species. Future studies, focused on a
single species, may want to improve this framework for those
species by adding specific relevant variables, exploring poten-
tial spatio-temporal autocorrelation, examining other ocean
models and evaluating the weighting of the thermal and ben-
thic components of the model.

In heavily exploited ecosystem like the Northeast Shelf, fish-
ing is a major driver that can impact the abundance and dis-
tribution of species. It is challenging to disentangle the effects
of fishing and the environment and there is no question that
the density of fish is impacted by fishing. The methods laid
out in the study do not eliminate the effects of fishing, but
hope to reduce the impact of fishing on the ability to develop
the measures of suitable habitat and thus, the availability in-
dex. Given that almost all the species in the study are com-
mercially exploited species, it is certain that fishing reduced
their numbers (in some cases greatly), but also that they are
still present in sufficient numbers to support the industry. The
fish that are present, therefore, are likely still found in their
preferred habitat. The method assumes that fish follow Mac-
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Figure 8. The HSI and availability for Summer Flounder in spring of 2011 and 2014. The cumulative availability index in each spring is in bold at the top of
each year. Monthly availability and HSI are below each figure. HSI is given as the proportion of the HSI in March of each year. The red line is the path of
the survey vessel each month. In 2014, the survey did not start until April.

Call’s Basin model (MacCall, 1990) and that suitable habitat
is roughly the same for all individuals of a species, through-
out the range of the species, for the entire time series. Fish-
ing can have a large impact on the abundance of fish (Worm
et al., 2009); however, due to density dependence, the Basin
model hypothesizes that the highest density of a species will
occur where the habitat is the best. As density increases in
the optimal habitat, the condition factor of individuals will
decline because of competition for resources and individuals
will expand to occupy suboptimal habitat, but habitat that
provides an equal level of condition factor. In heavily fished
species, the abundance is likely to be reduced from unfished
populations, however, lower population numbers should not
change the optimal habitat for a species, but simply change
the density of individuals within the former distribution of the
species. The highest density of individuals should still be lo-
cated in the best habitat. The study estimates suitable habitats
based on the differences in relative density between habitat
types, and the effects of fishing are not eliminated, but hope-
fully are minimized. Despite the range of caveats listed, the
models captured the major elements of suitable habitat and
produced time-varying availability indices that could be di-
rectly integrated into the stock assessment process (Adams
et al., 2015; Manderson et al., 2015).

Unaccounted for changes in catchability can cause major
problems in the use of bottom trawl data (Hilborn and Wal-

ters, 1992; Quinn and Deriso, 1999; Wilberg et al., 2009).
While hyperstability and hyperdepletion are often discussed
(even for surveys), time-varying catchability can result in per-
ceived changes in abundance when no changes have actu-
ally occurred. This creates biases in stock assessments and
poor management advice as well as potentially biasing re-
search studies that rely on fisheries independent trawl surveys
(Kotwicki et al., 2009, 2014). An availability index that varies
around a mean without a trend such as in pattern one is to
be expected; however, long-term gradual changes can be of
major concern and in need of correction. While the major-
ity of species did not exhibit availability related changes in
catchability, two patterns of change did emerge. The change
in catchability due to the 2009 switch in survey methodol-
ogy has largely been integrated into the assessment process by
changing the survey strata from which the index of abundance
is developed. The small, but significant decline in catchability
over time for certain species, however, has the potential to im-
pact assessment results. With the COBALT ocean model, we
found limited evidence for major changes in suitable habitat
that could change the species overlap with the trawl survey.
Changes in the timing, location, and methodology of the sur-
vey, however, clearly emerged as impacting the catchability of
the survey. Specifically, accounting for changes in availabil-
ity integrates both changes in fisheries independent surveys as
well as dynamic habitats that can capture short and long term
environmental variability to potentially produce an index of
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abundance that better represents a species abundance in the
water.

Supplementary data

Supplementary material is available at the ICESJMS online.
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